Direct Radical Polymerization of 4-Styryldiphenylphosphine: Preparation of Cross-Linked and Non-Cross-Linked Triphenylphosphine-Containing Polystyrene Polymers

Matthew Kwok Wai Choi, Helen Song He, and Patrick H. Toy*
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
phtoy@hkucc.hku.hk
Received August 21, 2003

Abstract: We report herein a simple synthesis of 4-styryldiphenylphosphine and the radical copolymerization of it with styrene, both with and without a cross-linker, to directly form cross-linked and non-cross-linked polystyrene supported triphenylphosphine in which the level of phosphine incorporation can be easily and accurately controlled. The utility of these polymers is demonstrated by their use in Mitsunobu and alcohol bromination reactions.

Recent years have seen a growing use of polymer-supported reagents by organic chemists in traditional solution-phase synthesis. These reagents may be used to either selectively remove impurities from synthetic products or to deliver reagents to dissolved synthesis substrates.1 Ley and co-workers have elegantly shown the power of this later approach in their syntheses of several structurally complex natural products using exclusively polymer-supported reagents.2 However, regardless of how they are used, all polymer-supported reagents have the effect of reducing product purification to simple filtration operations. Of the many reagents supported by polymers available, variations of triphenylphosphine are among the most broadly used. This is because triphenylphosphine is not only a reagent in a wide range of organic reactions,3 but also it serves as a ligand in many organometallic reagents.4 In the field of organic chemistry, attaching triphenylphosphine to a polymer has the great advantage that the byproduct of most reactions involving it, triphenylphosphine oxide, can be easily removed. When triphenylphosphine is used, the removal of this impurity from the desired synthesis product is often difficult, and therefore, alternative phosphine reagents that are more easily separated from the reaction mixture have been extensively examined.5–8

Despite these separations, triphenylphosphine remains the preferred reagent in organic synthesis, and therefore, many approaches to its immobilization on a polymer support and applications of such polymer-based reagents have been reported. Many polymers with different solubility profiles have been used in this regard, including poly(ethylene glycol),9 a ring-opened norbornene-derived polymer,10 and most recently a non-cross-linked 4-tetrahydroxystyrene polymer.11 However, polystyrene, both cross-linked and non-cross-linked, has been the polymer most widely used due to its inertness, low cost, and ease of preparation, and there are numerous reports regarding various strategies for the attachment of triphenylphosphine equivalents to it. Some of the earliest reports for the preparation of such polymer-bound phosphine reagents involved the radical copolymerization12 and homopolymerization13 of 4-styryldiphenylphosphine (eq 1). Despite the directness of this method, and for reasons that are not clear, in recent years the most common method employed for the preparation of polymer-bound phosphine reagents involves the sequence of bromination of preformed polystyrene,14 followed by either lithiation and subsequent reaction with electrophilic chlorodiphenylphosphine15,16 or reaction with lithium diphenylphosphide17 (eq 2). Recently, Charette et al. have reported a different method for the incorporation of triphenylphosphine moieties onto non-cross-linked polystyrene via an

* To whom correspondence should be addressed. Tel: (852) 2857-1586.

ether linkage.18 This process is also indirect and involves the sequence of chloromethylation of preformed polystyrene followed by etherification with 4-hydroxyphenyl-diphenylphosphine oxide and subsequent reduction to the phosphine.

\[
\text{Ph}_2\text{P} + \text{Br}_2, \text{cat.} \rightarrow \text{Ph}_2\text{PBr}_2
\]

(eq 1)

\[
\text{1} + \text{nBuLi then } \text{ClPPh}_2 \rightarrow \text{Ph}_2\text{PPh}_n \quad (\text{eq 2})
\]

Our interest in developing both soluble19 and insoluble20 polystyrene-based reagents led us to require a reliable method to prepare polystyrene polymers with varying concentrations of triphenylphosphine moieties in order to determine effects of functional group concentration on reagent utility and resin performance. The indirectness of the last two routes mentioned above made them unattractive for our use since they involve multiple reactions that need to proceed predictably and reliably in order to accurately incorporate the desired amount of phosphine groups. Therefore, we chose to examine the route shown in eq 1 that involves the direct radical copolymerization of 1. Herein we report our results for preparing such soluble and insoluble reagents with varying but predictable loading levels by this method. For the first time, full experimental detail is provided for the one-step synthesis of 1 together with its radical copolymerization with styrene. Furthermore, we show the synthetic utility of the resulting polymer-bound triphenylphosphine reagents by applying them in Mitsunobu and alcohol bromination reactions.

To study the polymerization of 1, we first examined several routes to prepare it on a 100 mmol scale. Recently, the synthesis of 1 in 89\% yield using a modified Grignard reaction that involves potassium, magnesium chloride, potassium iodide, and 4-chlorostyrene has been reported.21 A different synthesis of 1 that involves 4 steps in 52\% overall yield has also been reported.22 For convenience, we examined the simple Grignard reaction of 4-bromostyrene using magnesium (Scheme 1).23 To our satisfaction, this method reproducibly produced 1 in over 50\% yield on a 30 g scale.

\[\begin{align*}
\text{Br} + \text{MgBr} & \rightarrow \text{Ph}_2\text{PPh}_3 \quad (1) \\
\text{1} + \text{n} & \rightarrow \text{Ph}_2\text{PPh}_n
\end{align*}\]

Scheme 1a

\[\begin{align*}
\text{Ph}_2\text{P} & \rightarrow \text{Ph}_2\text{PPh}_3 \\
\text{Ph}_2\text{P} + \text{Br}_2, \text{cat.} & \rightarrow \text{Ph}_2\text{PBr}_2
\end{align*}\]

(eq 2)

\[\begin{align*}
1 + \text{nBuLi then } \text{ClPPh}_2 & \rightarrow \text{Ph}_2\text{PPh}_n
\end{align*}\]

With adequate quantities of 1 available, we next examined conditions for the copolymerization of 1 with styrene to prepare a soluble reagent (2) and with styrene and the cross-linker 1,4-bis(4-vinylphenoxy)butane, to form insoluble J and J-PPh₃ (J-J-PPh₃, 3) (Scheme 1).24 We found that AIBN induced radical copolymerization of 4:1 and 8:1 mixtures of styrene/1 afforded 2 that had loadings of 1.5 and 1.2 mmol PPh₃/g, 2a and 2b, respectively.25 Suspension polymerization of various molar ratios of styrene and 1, ranging from 93:1 to 0:35, with 2 mol % of the cross-linker initiated by AIBN26 afforded 3a–f with the predicted loading levels (Table 1).27 This procedure was used to prepare either 10 or 50 g of polymer 3 per batch. Importantly this procedure works at both extremes in terms of ratio between styrene and 1, and allows for the production of 3a, with the theoretical maximum possible loading level of 3.5 mmol PPh₃/g and 3f, that contains minimal loading of approximately 0.1 mmol PPh₃/g.

To assess the synthetic utility of our polymers we chose to apply them in reactions in which commercially avail-

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
1 & styrene & P content (%) & loading (mmol/g) & yield (\%) \\
\hline
3a & 35 & 0 & 10.85 & 9.85 & 3.5 & 3.2 & 96 \\
3b & 25 & 27 & 7.75 & 7.25 & 2.5 & 2.3 & 90 \\
3c & 16 & 52 & 4.96 & 4.80 & 1.6 & 1.5 & 84 \\
3d & 10 & 65 & 3.10 & 3.15 & 1.0 & 1.0 & 82 \\
3e & 5 & 82 & 1.55 & 1.57 & 0.5 & 0.5 & 75 \\
3f & 1 & 93 & 0.31 & <0.5 & 0.1 & 0.1 & 70 \\
3g & 80 & 259 & 4.96 & 4.59 & 1.6 & 1.5 & 98 \\
\hline
\end{tabular}
\caption{Synthesis of J-J-PPh₃ (3)}
\end{table}

27 J and J-PPh₃ is a registered trademark of the Aldrich Chemical Co.

25 The loading levels of 2a and 2b were determined by elemental analysis. The homogeneity of the phosphine groups was determined by 31P NMR spectroscopy.

26 Attempts to use benzoyl peroxide as the initiator failed to produce any filterable polymer beads.

able polystyrene-bound triphenylphosphine \(^{28}\) has been successfully applied in, namely Mitsunobu and alcohol bromination reactions.\(^{29,30}\) The Mitsunobu reactions were performed using \(2a\) in a 1.5-fold molar excess. The results are summarized in Table 2. As can be seen, reagent \(2a\) affords good isolated yields of the expected esters (entries 1–6, 9, and 10) and ethers (entries 7 and 8). Additionally, even secondary alcohols perform reasonably well with this crystalline reagent (entries 5 and 6). In these reactions, it was necessary to precipitate the polymer using diethyl ether in order to get a crystalline form of the polymer that was easy to remove by filtration.\(^{31}\) After removal of the polymer, the crude material was filtered through a plug of silica gel to afford the pure product, with no trace of phosphine or phosphine oxide contaminants.

To test the performance of Janda-J-PPh\(_3\), \(3g\) was used to convert alcohols to alkyl bromides (Table 3). This polymer was chosen since the 1.5 mmol/g loading level afforded reasonable resin swelling and it seemed likely to allow for efficient substrate diffusion through it. Thus, it was first reacted with bromine to form the phosphine-halogen complex in situ that converted the alcohol substrates into their corresponding alkyl bromides in quantitative yield in less than 10 min. In these reactions, the pure products were isolated in essentially quantitative yield after filtration to remove the polymer and concentration in vacuo to remove the solvent.

In summary, we have developed a facile synthesis of \(1\) and used this monomer to directly prepare both non-cross-linked and cross-linked triphenylphosphine containing polystyrene polymers using homogeneous and suspension polymerization processes. It is noteworthy that monomer \(1\) can be incorporated into the polymers at predictable levels, depending upon the ratio of monomers used in the polymerization reaction. This allows for the facile variation of the loading levels of the polymers and thereby facilitates the study of the effects of functional group density and polymer microenvironment in polymer-assisted organic synthesis.\(^{32}\) In a pioneering report by Alexandratos,\(^{32c}\) it was observed that for a different polymer-bound phosphine in Mitsunobu reactions, having maximally loaded polymer is not optimal.

TABLE 2. Mitsunobu Reactions Using 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nucleophile</th>
<th>Electrophile</th>
<th>Product</th>
<th>Isolated Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R(_1) = H, R(_2) = COOH</td>
<td>X = CH(_3)OH, Y = H</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>R(_1) = H, R(_2) = COOH</td>
<td>X = CH(_3)OH, Y = CH(_3)</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>R(_1) = NO(_2), R(_2) = COOH</td>
<td>X = CH(_3)OH, Y = H</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>R(_1) = NO(_2), R(_2) = COOH</td>
<td>X = CH(_3)OH, Y = CH(_3)</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>R(_1) = H, R(_2) = COOH</td>
<td>X = CH(OH)CH(_3), Y = Br</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>R(_1) = NO(_2), R(_2) = COOH</td>
<td>X = CH(OH)CH(_3), Y = Br</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>R(_1) = Br, R(_2) = OH</td>
<td>X = CH(_3)OH, Y = H</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>R(_1) = NO(_2), R(_2) = OH</td>
<td>X = CH(_3)OH, Y = H</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>R(_1) = NO(_2), R(_2) = COOH</td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>R(_1) = NO(_2), R(_2) = COOH</td>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

TABLE 3. Bromination of Alcohols Using 3g

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{28}\) Polystyrene-bound PPh\(_3\) is available from many suppliers with loading ranging from 1.0 to approximately 3.0 mmol PPh\(_3\)/g. Janda-J-PPh\(_3\) is also commercially available with a loading of approximately 3.0 mmol PPh\(_3\)/g.

\(^{31}\) When either methanol or hexanes was used as the precipitation solvent, the polymer formed a sticky and intractable residue that was difficult to filter.

\(^{32}\) In a pioneering report by Alexandratos,\(^{32c}\) it was observed that for a different polymer-bound phosphine in Mitsunobu reactions, having maximally loaded polymer is not optimal.
and that resin with approximately half of the styrene monomers functionalized afforded better results. Our preparation of 3a–f allows for a similar systematic examination of the effects that triarylphosphine group concentration has on resin performance.

The utility of these polymers has been demonstrated in Mitsunobu reactions and in the conversion of alcohols to alkyl bromides. While various syntheses of 1 and methods for its polymerization have been previously reported, we present here the first detailed procedures for the direct medium-scale synthesis of reagents 2 and 3 with variable and predictable loading levels. Preparation of other polymer-bound phosphine reagents using the methodology presented here is currently being investigated.

Experimental Section

4-Styryldiphenylphosphine (1). Chlorodiphenylphosphine (30 mL, 164 mmol) was added slowly at 0 °C to a solution of the Grignard reagent prepared from 4-bromostyrene (30.0 g, 164 mmol) and Mg (4.8 g, 197 mmol) in dry THF (300 mL). After the addition was complete, the reaction mixture was stirred at rt for 3 h. At this time, the reaction mixture was diluted with diethyl ether (1 L) and then washed sequentially with water (2 × 250 mL), 10% aqueous HCl (2 × 250 mL), saturated aqueous NaHCO3 (2 × 250 mL), and brine (2 × 250 mL). The organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The resulting crude product was purified by silica gel chromatography (5% EtOAc/hexanes) to afford the pure alkyl bromide product that was determined to be essentially pure by 1H NMR analysis. Our recorded 1H NMR spectra matched those available (Table 2).

General Procedure for the Bromination of Alcohols Using J- and el-PPh3 (3g).

A solution of 3g (1.2 g, 1.5 mmol PPh3/g) in anhydrous CH2Cl2 (15 mL) at rt and under a nitrogen atmosphere was added bromine (0.3 g, 1.8 mmol, 1 equiv). The color from the bromine dissipated almost immediately. After the addition was complete, the alcohol substrate (0.6 mmol, 0.3 equiv) was added. The reactions, monitored by thin-layer chromatography, were complete within 10 min. The suspension was then filtered, and the resin was washed with additional CH2Cl2 (3 × 10 mL). The combined filtrate was concentrated in vacuo and the crude residue was filtered through a plug of silica gel to provide the essentially pure product (Table 2).

Acknowledgment. This research was supported financially by the University of Hong Kong, the Hung Hing Ying Physical Sciences Research Fund, and the Research Grants Council of the Hong Kong Special Administrative Region, P. R. of China (Project No. HKU 7112/02P). We would also like to thank Mr. Bob Wander and the Aldrich Chemical Co. for their gift of many of the reagents used in this project.

Supporting Information Available: NMR spectra of monomer 1, polymers 2a and 2b, and the Mitsunobu and bromination reaction products. This material is available free of charge via the Internet at http://pubs.acs.org.