Supporting Information

Influence of Michael Acceptor Stereochemistry on Intramolecular Morita-Baylis-Hillman Reactions

Wen-Dong Teng,† Rui Huang,† Cathy Kar-Wing Kwong,‡ Min Shi‡,* and Patrick H. Toy‡,*

†School of Chemistry & Pharmaceutics, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China, and ‡Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China.

Email: mshi@pub.sioc.ac.cn and phtoy@hku.hk

General Methods. ¹H and ¹³C NMR spectra were recorded on a 300 MHz spectrometer in CDCl₃ with tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded using the EI method. Tetrahydrofuran and toluene were distilled from Na/benzophenone under an Ar atmosphere. Acetonitrile and 1,2-dichloroethane were distilled from CaH₂ under an Ar atmosphere. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC analysis using GF₂₅₄ silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.
6-Acetoxy-2-cyclohexene-1-one (5).1 To a stirred solution of 2-cyclohexene-1-one (3.06 g, 30.00 mmol) in toluene (60 mL) was added Pb(OAc)\textsubscript{4} (28.00 g, 60.00 mmol). The mixture was then heated to reflux for 4 h, and cooled to room temperature. The resulting mixture was diluted with ether, washed with 1 M HCl, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to afford 5 (2.31 g, 15.00 mmol) in 50% yield.

Typical reaction procedure for nucleophilic 1,2-addition to 5: 2-ethyl-3-cyclohexene-1,2-diol (6a).1 To a stirred solution of 5 (2.44 g, 15.84 mmol) in THF (30 mL) was added 1 M THF solution of EtMgBr (50 mL, 47.53 mmol) at 0 °C. The mixture was stirred at that temperature for 0.5 h and then stirred at room temperature for 0.5 h. It was then quenched by the addition of a saturated aq solution of NH\textsubscript{4}Cl (40 mL). The resulting mixture was stirred for 1 h more, diluted with ethyl acetate, wash with saturated aq NaCl solution, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to afford diol 6a (1.079 g, 7.60 mmol) in 48 % yield as a mixture of diastereoisomers.
Table 1. Synthesis of intramolecular MBH reaction substrates.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compounds</th>
<th>1:2</th>
<th>Combined yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a + 2a, R = -Et</td>
<td>4.1:1</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>1b + 2b, R = -Bu</td>
<td>8.8:1</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>1c + 2c, R = -Ph</td>
<td>4.8:1</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>1d + 2d, R = -C\textsubscript{6}H\textsubscript{4}-4-Cl</td>
<td>1.9:1</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>1e + 2e, R = -C\textsubscript{6}H\textsubscript{4}-3-Me</td>
<td>9.7:1</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>1f + 2f, R = -C\textsubscript{6}H\textsubscript{4}-4-Me</td>
<td>6.7:1</td>
<td>57</td>
</tr>
</tbody>
</table>

^a Isolated yield.

Typical reaction procedure for oxidative cleavage reactions: (Z)-6-oxo-4-octenal (1a) and (E)-6-oxo-4-octenal (2a).¹ To a stirred solution of 6a (253 mg, 1.78 mmol) in MeCN (20 mL) was added Pb(OAc)₄ (830 mg, 1.78 mmol). The reaction mixture was stirred at room temperature for 15 min, diluted with ethyl acetate, washed with 1 M aq HCl solution, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to afford 1a (106 mg, 0.76 mmol) in 42% yield and 2a (26 mg, 0.19 mmol) in 10% yield. These dicarbonyl compounds were found to be relatively unstable and had to be used in the intramolecular MBH reactions soon after preparation.
Typical reaction procedure for the intramolecular Morita-Baylis-Hillman reactions:
1-(5-hydroxy-1-cyclopentenyl)-1-propanone (3a).1 To a stirred solution of 1a (105 mg, 0.75 mmol) in \textit{t}-BuOH (7.5 mL) was added PPh\textsubscript{3} (197 mg, 0.75 mmol) at 40 °C. The mixture was stirred at that temperature for 60 h, diluted with ethyl acetate, washed with water, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography to afford 3a (76 mg, 0.54 mmol) in 72% yield.

Table 2. Intramolecular MBH reaction results using PBu\textsubscript{3} as the catalyst.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Conc.</th>
<th>Temp.</th>
<th>Time</th>
<th>Product</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1a, R = -Et</td>
<td>\textit{t}-BuOH</td>
<td>0.1 M</td>
<td>40 °C</td>
<td>48 h</td>
<td>3a</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>2a, R = -Et</td>
<td>\textit{t}-BuOH</td>
<td>0.1 M</td>
<td>40 °C</td>
<td>48 h</td>
<td>3a</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1c, R = -Ph</td>
<td>CH\textsubscript{3}CN</td>
<td>0.1 M</td>
<td>rt</td>
<td>12 h</td>
<td>3c</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>2c, R = -Ph</td>
<td>CH\textsubscript{3}CN</td>
<td>0.1 M</td>
<td>rt</td>
<td>12 h</td>
<td>3c</td>
<td>0</td>
</tr>
</tbody>
</table>

a Isolated yield.
(Z)-6-Oxo-4-octenal (1a). Yellow oil; IR (CH₂Cl₂): ν 3448, 2973, 2938, 2728, 1748, 1697, 1631, 1374, 1074, 982, 817 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.08 (3H, t, J = 7.4 Hz, CH₃), 2.51 (2H, q, J = 7.2 Hz, CH₂), 2.63 (2H, t, J = 7.2 Hz, CH₂), 2.92 (2H, q, J = 7.2 Hz, CH₂), 6.09 (1H, dt, J_d = 11.1 Hz, J_t = 7.5 Hz, CH), 6.21 (1H, t, J = 11.4 Hz, CH), 9.78 (1H, s, CHO); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 7.5, 22.0, 37.1, 42.8, 127.1, 145.0, 201.3, 201.8; MS (EI) m/z (%): 140 (1.2) [M⁺], 111 (14.5), 83 (25.2), 66 (100), 57 (30.2); HRMS (EI) calcd. for C₈H₁₂O₂ (M⁺) requires 140.0837, found 140.0818.
(Z)-6-Oxo-4-decenal (1b).1 Yellow oil; IR (CH\textsubscript{2}Cl\textsubscript{2}): \nu 3431, 2958, 2932, 2724, 1725, 1691, 1618, 1412, 1379, 1062, 980, 751 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, TMS): \delta 0.91 (3H, t, J = 7.2 Hz, CH\textsubscript{3}), 1.25-1.37 (2H, m, CH\textsubscript{2}), 1.53-1.63 (2H, m, CH\textsubscript{2}), 2.44-2.50 (2H, m, CH\textsubscript{2}), 2.60-2.67 (2H, m, CH\textsubscript{2}), 2.90 (2H, q, J = 7.2 Hz, CH\textsubscript{2}), 6.08 (1H, dt, J\textsubscript{d} = 11.4 Hz, J\textsubscript{t} = 7.4 Hz, CH), 6.20 (1H, t, J = 11.1 Hz, CH), 9.78 (1H, s, CHO); 13C NMR (75 MHz, CDCl\textsubscript{3}, TMS): \delta 13.8, 22.1, 22.2, 25.9, 43.0, 43.8, 127.5, 145.1, 201.3, 201.7; MS (EI) m/z (%): 168 (0.9) [M+], 139 (9.5), 93 (13.2), 85 (20.7), 66 (100), 57 (29.6); HRMS (EI) calcd. for C\textsubscript{10}H\textsubscript{16}O\textsubscript{2} (M+) requires 168.1150, found: 168.1131.
(Z)-6-Oxo-6-phenyl-4-hexenal (1c). Yellow oil; IR (CH₂Cl₂): ν 3426, 3060, 2897, 2826, 2726, 1722, 1664, 1611, 1448, 1007, 739, 691 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 2.66 (2H, t, J = 6.9 Hz, CH₂), 2.92 (2H, q, J = 7.4 Hz, CH₂), 6.34 (1H, dt, J_d = 11.4 Hz, J_t = 7.5 Hz, CH), 6.87 (1H, dt, J_d = 11.4 Hz, J_t = 1.8 Hz, CH), 7.42-7.58 (3H, m, ArH), 7.91-7.94 (2H, m, ArH), 9.79 (1H, t, J = 1.4 Hz, CHO); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 22.4, 42.9, 125.1, 128.1, 128.4, 132.7, 138.0, 146.4, 191.4, 201.2; MS (EI) m/z (%): 188 (2.3) [M⁺], 170 (15.3), 159 (34.3), 105 (100), 77 (81.2), 66 (33.5); HRMS (EI) calcd. for C₁₂H₁₂O₂ (M⁺) requires 188.0837, found: 188.0843.
(Z)-6-(4-Chlorophenyl)-6-oxo-4-hexenal (1d). Yellow oil; IR (CH₂Cl₂): ν 3460, 3063, 2932, 2853, 2726, 1725, 1668, 1490, 1401, 1092, 1010, 828, 530 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 2.69 (2H, t, J = 6.6 Hz, CH₂), 2.93 (2H, ddd, J_d = 1.2 Hz, J_d = 7.2 Hz, J_d = 13.7 Hz, CH₂), 6.38 (1H, dt, J_d = 11.4 Hz, J_t = 7.5 Hz, CH), 6.83 (1H, dt, J_d = 11.7 Hz, J_t = 1.5 Hz, CH), 7.42-7.46 (2H, m, ArH), 7.85-7.90 (2H, m, ArH), 9.81 (1H, t, J = 1.4 Hz, CHO); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 22.6, 43.0, 124.8, 128.9, 129.7, 136.5, 139.3, 147.3, 190.3, 201.2; MS (EI) m/z (%): 222 (0.7) [M⁺], 204 (3.5), 141 (26.5), 139 (100), 111 (26.9), 75 (8.3); HRMS (EI) calcd. for C₁₂H₁₁O₂Cl (M⁺) requires 222.0448, found: 222.0447.
(Z)-6-Oxo-6-m-tolyl-4-hexenal (1e). Yellow oil; IR (CH₂Cl₂): ν 3424, 3056, 2924, 2832, 2727, 1724, 1666, 1613, 1437, 1051, 1022, 767, 613 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 2.39 (3H, s, CH₃), 2.65 (2H, t, J = 6.8 Hz, CH₂), 2.91 (2H, ddd, Jₐ = 1.5 Hz, Jₐ = 7.5 Hz, Jₐ = 14.7 Hz, CH₂), 6.32 (1H, dt, Jₐ = 11.7 Hz, Jₐ = 7.5 Hz, CH), 6.86 (1H, dt, Jₐ = 11.6 Hz, Jₐ = 1.5 Hz, CH), 7.30-7.35 (2H, m, ArH), 7.70-7.74 (2H, m, ArH), 9.78 (1H, t, J = 1.4 Hz, CHO); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 21.1, 22.4, 42.9, 125.3, 125.3, 128.3, 128.6, 133.5, 138.0, 138.2, 146.1, 191.6, 201.2; MS (EI) m/z (%): 202 (1.5) [M⁺], 184 (10.1), 119 (100), 91 (80.8), 65 (27.8); HRMS (EI) calcd. for C₁₃H₁₄O₂ (M⁺) requires 202.0994, found: 202.0991.
(Z)-6-Oxo-6-p-tolyl-4-hexenal (1f). Yellow oil; IR (CH$_2$Cl$_2$): ν 3428, 3031, 2923, 2827, 2727, 1723, 1662, 1608, 1422, 1181, 1010, 778 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 2.39 (3H, s, CH$_3$), 2.65 (2H, dt, J_d = 1.5 Hz, J_t = 7.1 Hz, CH$_2$), 2.90 (2H, ddd, J_d = 2.0 Hz, J_d = 7.1 Hz, J_d = 15.0 Hz, CH), 6.30 (1H, dt, J_d = 11.7 Hz, J_t = 7.7 Hz, CH), 6.85 (1H, dt, J_d = 11.7 Hz, J_t = 7.5 Hz, CH), 7.23-7.26 (2H, m, ArH), 7.81-7.85 (2H, m, ArH), 9.77 (1H, t, J = 1.5 Hz, CHO); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 21.4, 22.3, 42.9, 125.2, 128.2, 129.1, 135.4, 143.5, 145.8, 191.1, 201.3; MS (EI) m/z (%): 202 (1.2) [M$^+$], 173 (12.1), 119 (100), 91 (53.1), 65 (16.1); HRMS (EI) calcd. for C$_{13}$H$_{14}$O$_2$ (M$^+$) requires 202.0994, found: 202.0997.
(E)-6-Oxo-4-octenal (2a). Yellow oil; IR (CH\(_2\)Cl\(_2\)): \(v\) 3429, 2974, 2937, 2726, 1724, 1693, 1622, 1459, 1413, 1379, 1121, 1040, 980, 816 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), TMS): \(\delta\) 1.09 (3H, t, \(J = 7.2\) Hz, CH\(_3\)), 2.53-2.60 (4H, m, CH\(_2\)), 2.64-2.70 (2H, m, CH\(_2\)), 6.12 (1H, dt, \(J_d = 15.4\) Hz, \(J_t = 1.5\) Hz, CH), 6.82 (1H, dt, \(J_d = 15.9\) Hz, \(J_t = 6.6\) Hz, CH), 9.81 (1H, s, CHO); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), TMS): \(\delta\) 7.9, 24.5, 33.3, 41.8, 130.6, 143.9, 200.3, 200.6; MS (EI) m/z (%): 140 (2.5) [M\(^+\)], 111 (57.3), 83 (85.2), 57 (20.5), 55 (100); HRMS (EI) calcd. for C\(_8\)H\(_{12}\)O\(_2\) (M\(^+\)) requires 140.0837, found: 140.0851.
(E)-6-Oxo-4-decenal (2b). Yellow oil; IR (CH₂Cl₂): ν 3448, 2932, 2871, 1728, 1655, 1629, 1458, 1374, 1045, 748, 606 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.91 (3H, t, J = 7.4 Hz, CH₃), 1.26-1.39 (4H, m, CH₂), 1.53-1.63 (2H, m, CH₂), 2.50-2.57 (2H, m, CH₂), 2.61-2.69 (2H, m, CH₂), 6.13 (1H, d, J = 15.9 Hz, CH), 6.81 (1H, dt, Jₙ = 15.0 Hz, Jₜ = 6.9 Hz, CH), 9.80 (1H, s, CHO); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 13.8, 22.3, 24.5, 26.1, 40.0, 41.8, 130.9, 144.0, 200.3, 200.4; MS (EI) m/z (%): 168 (1.6) [M⁺], 143 (9.5), 129 (26.1), 109 (27.7), 69 (46.8), 55 (100), 41 (62.6); HRMS (EI) calcd. for C₁₀H₁₆O₂ (M⁺) requires 168.1150, found: 168.1127.
(E)-6-Oxo-6-phenyl-4-hexenal (2c).\(^1\) Yellow oil; IR (CH\(_2\)Cl\(_2\)): \(\nu\) 3426, 3060, 2925, 2854, 2727, 1723, 1668, 1620, 1448, 1005, 977, 742, 694 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\), TMS): \(\delta\) 2.60-2.74 (4H, m, CH\(_2\)), 6.93 (1H, d, \(J = 15.6\) Hz, CH), 7.01 (1H, dt, \(J_d = 15.3\) Hz, \(J_t = 5.9\) Hz, CH), 7.45-7.59 (3H, m, ArH), 7.90-7.93 (2H, m, ArH), 9.82 (1H, s, CHO); \(^{13}\)C NMR (75 MHz, CDCl\(_3\), TMS): \(\delta\) 24.9, 41.9, 126.7, 128.5, 128.5, 132.8, 137.6, 146.7, 190.4, 200.4; MS (EI) \(m/z (\%): 188 (1.6) [M^+]\), 159 (28.6), 105 (100), 77 (41.5), 55 (10.1); HRMS (EI) calcd. for C\(_{12}\)H\(_{12}\)O\(_2\) (M\(^+\)) requires 188.0837, found: 188.0839.
(E)-6-(4-Chlorophenyl)-6-oxo-4-hexenal (2d). Yellow oil; IR (CH$_2$Cl$_2$): ν 3475, 3034, 2936, 2875, 1748, 1695, 1618, 1428, 1373, 1074, 1042, 919, 816, 747 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 2.61-2.75 (4H, m, CH$_2$), 6.89 (1H, dt, J_d = 15.3 Hz, J_t = 1.2 Hz, CH), 7.03 (1H, dt, J_d = 15.6 Hz, J_t = 6.5 Hz, CH), 7.42-7.47 (2H, m, ArH), 7.84-7.89 (2H, m, ArH), 9.83 (1H, t, J = 1.1 Hz, CHO); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 25.0, 41.9, 126.3, 128.8, 129.9, 135.9, 139.2, 147.2, 189.0, 200.3; MS (EI) m/z (%): 222 (16.9) [M$^+$], 193 (35.3), 180 (12.1), 138 (100), 111 (25.5); HRMS (EI) calcd. for C$_{12}$H$_{11}$O$_2$Cl (M$^+$) requires 222.0448, found: 222.0444.
\((E)-6\text{-Oxo-6-m-tolyl-4-hexenal (2e)}\). Yellow oil; IR (CH$_2$Cl$_2$): \(\nu \) 3450, 2925, 2875, 2720, 1721, 1668, 1622, 1429, 1054, 1009, 781 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): \(\delta \) 2.41 (3H, s, CH$_3$), 2.59-2.80 (4H, m, CH$_2$), 6.88-7.05 (2H, m, CH), 7.25-7.36 (3H, m, ArH), 7.69-7.73 (1H, m, ArH), 9.81 (1H, s, CHO); 13C NMR (75 MHz, CDCl$_3$, TMS): \(\delta \) 21.3, 24.9, 41.9, 125.4, 125.7, 128.3, 129.0, 133.6, 137.6, 138.3, 146.5, 190.6, 200.4; MS (EI) \(m/z \) (%): 202 (2.1) [M$^+$], 173 (9.0), 119 (100), 91 (36.2), 65 (8.9); HRMS (EI) calcd. for C$_{13}$H$_{14}$O$_2$ (M$^+$) requires 202.0994, found: 202.0995.
(E)-6-Oxo-6-p-tolyl-4-hexenal (2f). Yellow oil; IR (CH$_2$Cl$_2$): ν 3428, 3031, 2922, 2828, 2726, 1724, 1669, 1621, 1571, 1410, 1042, 977, 810, 726 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 2.41 (3H, s, CH$_3$), 2.60-2.73 (4H, m, CH$_2$), 6.92 (1H, d, J = 15.3 Hz, CH), 6.96-7.04 (1H, m, CH), 7.21-7.28 (2H, m, ArH), 7.82-7.97 (2H, m, ArH), 9.82 (1H, t, J = 1.5 Hz, CHO); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 21.5, 24.9, 41.9, 126.6, 128.6, 129.2, 134.9, 143.6, 146.1, 189.9, 200.5; MS (EI) m/z (%): 202 (3.0) [M$^+$], 173 (21.8), 119 (100), 91 (32.6), 65 (9.5); HRMS (EI) calcd. for C$_{13}$H$_{14}$O$_2$ (M$^+$) requires 202.0994, found: 202.1005.
1-(5-Hydroxy-1-cyclopentenyl)propanone (3a).1 Yellow oil; IR (CH\textsubscript{2}Cl\textsubscript{2}): ν 3463, 3055, 2981, 2939, 2844, 1659, 1621, 1378, 1055, 739, 704 cm-1; 1H NMR (300 MHz, CDCl\textsubscript{3}, TMS): δ 1.11 (3H, t, J = 7.2 Hz, CH\textsubscript{3}), 1.81-1.87 (1H, m, CH\textsubscript{2}), 2.28-2.48 (2H, m, CH\textsubscript{2}), 2.65-2.76 (3H, m, CH\textsubscript{2}), 3.38 (1H, s, OH), 5.13 (1H, br s, CH), 6.87 (1H, s, CH); 13C NMR (75 MHz, CDCl\textsubscript{3}, TMS): δ 7.8, 30.9, 31.3, 31.9, 75.2, 145.3, 145.4, 200.7; MS (EI) m/z (%): 140 (3.5) [M+], 111 (100), 93 (17.2), 83 (79.2), 67 (20.6), 55 (29.6); HRMS (EI) calcd. for C\textsubscript{8}H\textsubscript{12}O\textsubscript{2} (M+) requires 140.0837, found: 140.0853.
1-(5-Hydroxy-1-cyclopentenyl)pentanone (3b). Yellow oil; IR (CH$_2$Cl$_2$): υ 3487, 3055, 2933, 2871, 1659, 1619, 1455, 1380, 1055, 982, 739 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 0.92 (3H, t, $J = 7.4$ Hz, CH$_3$), 1.26-1.41 (2H, m, CH$_2$), 1.56-1.66 (2H, m, CH$_2$), 1.77-1.88 (1H, m, CH$_2$), 2.24-2.51 (2H, m, CH$_2$), 2.66-2.71 (3H, m, CH$_2$), 3.40 (1H, s, OH), 5.12 (1H, br s, CH), 6.87 (1H, t, $J = 2.1$ Hz, CH); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 13.6, 22.1, 26.2, 30.8, 31.3, 38.5, 75.1, 145.4, 145.6, 200.4; MS (EI) m/z (%): 168 (0.6) [M$^+$], 150 (13.0), 126 (15.7), 111 (100), 83 (48.7), 55 (30.2); HRMS (EI) calcd. for C$_{10}$H$_{16}$O$_2$ (M$^+$) requires 168.1150, found: 168.1130.
(5-Hydroxy-1-cyclopentenyl)-phenyl-methanone (3c). Yellow oil; IR (CH$_2$Cl$_2$): ν 3441, 3059, 2937, 1641, 1598, 1446, 1352, 1053, 931, 724, 697 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 1.90-2.00 (1H, m, CH$_2$), 2.32-2.60 (2H, m, CH$_2$), 2.71-2.85 (1H, m, CH$_2$), 3.35 (1H, s, OH), 5.30 (1H, br s, CH), 6.72 (1H, t, J = 2.6 Hz, CH), 7.43-7.60 (3H, m, ArH), 7.75-7.78 (2H, m, ArH); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 31.3, 31.5, 76.1, 128.1, 128.7, 132.2, 137.9, 144.4, 148.9, 194.5; MS (EI) m/z (%): 188 (65.8) [M$^+$], 170 (26.1), 128 (45.0), 105 (92.3), 83 (100), 77 (81.8); HRMS (EI) calcd. for C$_{12}$H$_{12}$O$_2$ (M$^+$) requires 188.0837, found: 188.0842.
(5-Hydroxy-1-cyclopentenyl)-4-chlorophenyl-methanone (3d). Yellow oil; IR (CH$_2$Cl$_2$): ν 3443, 3056, 2930, 1639, 1400, 1375, 1175, 1014, 839, 695 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 1.89-1.99 (1H, m, CH$_2$), 2.30-2.42 (1H, m, CH$_2$), 2.47-2.59 (1H, m, CH$_2$), 2.72-2.84 (1H, m, CH$_2$), 3.43 (1H, s, OH), 5.28 (1H, br s, CH), 6.68 (1H, t, $J = 2.6$ Hz, CH), 7.40-7.45 (2H, m, ArH), 7.70-7.74 (2H, m, ArH); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 31.3, 31.7, 76.3, 128.6, 130.2, 136.3, 138.7, 144.4, 149.0, 193.3; MS (EI) m/z (%): 222 (34.9) [M$^+$], 204 (19.4), 187 (65.0), 139 (100), 111 (74.8), 83 (84.7); HRMS (EI) calcd. for C$_{12}$H$_{11}$O$_2$Cl (M$^+$) requires 222.0448, found: 222.0448.
(5-Hydroxy-1-cyclopentenyl)-m-tolyl-methanone (3e). Yellow oil; IR (CH₂Cl₂): ν 3430, 3056, 2934, 1730, 1644, 1584, 1427, 1347, 1189, 1053, 931, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.88-1.99 (1H, m, CH₂), 2.30-2.37 (1H, m, CH₂), 2.40 (3H, s, CH₃), 2.46-2.58 (1H, m, CH₂), 2.70-2.83 (1H, m, CH₂), 3.50 (1H, s, OH), 5.28 (1H, br s, CH), 6.68 (1H, t, J = 2.7 Hz, CH), 7.28-7.37 (2H, m, ArH), 7.54-7.57 (2H, m, ArH); ¹³C NMR (75 MHz, CDCl₃, TMS): δ 21.2, 31.3, 31.6, 76.3, 126.1, 128.0, 129.2, 133.1, 138.0, 144.5, 148.8, 194.9; MS (EI) m/z (%): 202 (70.5) [M⁺], 187 (26.4), 159 (37.4), 119 (100), 83 (58.6); HRMS (EI) calcd. for C₁₃H₁₄O₂ (M⁺) requires 202.0994, found: 202.0996.
(5-Hydroxy-1-cyclopentenyl)-p-tolyl-methanone (3f). Yellow oil; IR (CH$_2$Cl$_2$): ν 3485, 3055, 2925, 2854, 1723, 1633, 1605, 1457, 1351, 1180, 1052, 739 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$, TMS): δ 1.87-1.98 (1H, m, CH$_2$), 2.25-2.35 (1H, m, CH$_2$), 2.41 (3H, s, CH$_3$), 2.45-2.59 (1H, m, CH$_2$), 2.68-2.82 (1H, m, CH$_2$), 3.52 (1H, s, OH), 5.27 (1H, br s, CH), 6.66 (1H, t, J = 2.9 Hz, CH), 7.20-7.28 (2H, m, ArH), 7.66-7.70 (2H, m, ArH); 13C NMR (75 MHz, CDCl$_3$, TMS): δ 21.5, 31.3, 31.6, 76.5, 128.9, 129.0, 135.3, 143.1, 144.4, 148.2, 194.4; MS (EI) m/z (%): 202 (44.4) [M$^+$], 187 (40.7), 159 (32.9), 119 (100), 83 (35.7); HRMS (EI) calcd. for C$_{13}$H$_{14}$O$_2$ (M$^+$) requires 202.0994, found: 202.0991.
References:
